
© 2017 Arm Limited

Conrad Hillairet

conrad.hillairet@arm.com

Improving your code
with Arm Forge

PDC-PRACE Workshop
“HPC Tools for the Modern Era”

© 2017 Arm Limited 2

An introduction to Arm

Arm is the world's leading semiconductor intellectual
property supplier

We license to over 350 partners: present in 95% of smart phones,
80% of digital cameras, 35% of all electronic devices, and a total of
60 billion Arm cores have been shipped since 1990

Our CPU business model:

License technology to partners, who use it to create their own
system-on-chip (SoC) products

• We may license an instruction set architecture (ISA) such as
“Armv8-A”

• or a specific implementation, such as “Cortex-A72”

Partners who license an ISA can create their own implementation,
as long as it passes the compliance tests

…and our IP extends beyond the CPU

© 2017 Arm Limited 3

Early HPC deployments

© 2017 Arm Limited 4

Catalyst UK

Sites and Target HPC
Applications:

– EPCC: WRF, OpenFOAM, Rolls
Royce Hydra opt, 2 PhD
candidates

– Leicester: Data-intensive apps,
genomics, MOAB Torque,
DiRAC collab

– Bristol: VASP, CASTEP,
Gromacs, CP2K, Unified Model,
Hydra, NAMD, Oasis, NEMO,
OpenIFS, CASINO, LAMMPS

Accelerating Arm adoption in the UK

Typical Cluster for each site:

▪ 64 x Apollo 70 Compute Nodes (2 racks):

▪ Dual socket Cavium 32c, 2.2 GHz

▪ 256GB memory (16GB DIMMs)

▪ Mellanox IB EDR CX5 Clos

▪ 4096+ cores

© 2017 Arm Limited 5

Astra

Beskow 2.43 petaflops (source)

Astra 2.32 petaflops (source)

https://www.pdc.kth.se/hpc-services/computing-systems/beskow-1.737436
https://share-ng.sandia.gov/news/resources/news_releases/arm_supercomputer/

© 2017 Arm Limited 6

Japan

© 2017 Arm Limited 7

Text 30pt sentence case

Conrad : Support Engineer - Arm Allinea Studio and Arm Forge
A quick glance at what is in Arm Allinea Studio

C/C++ Compiler

AArch64

•C++ 14 support

•OpenMP 4.5 without offloading

•SVE ready

Fortran Compiler

AArch64

•Fortran 2003 support

•Partial Fortran 2008 support

•OpenMP 3.1

•SVE ready

Performance Libraries

AArch64

•Optimized math libraries

•BLAS, LAPACK and FFT

•Threaded parallelism with OpenMP

Forge (DDT and MAP)

Cross Platform

•Profile, Tune and Debug

•Scalable debugging with DDT

•Parallel Profiling with MAP

Performance Reports
Cross Platform

•Analyze your application

•Memory, MPI, Threads, I/O, CPU
metrics

© 2017 Arm Limited 8

Text 30pt sentence case

Conrad : Support Engineer - Arm Allinea Studio and Arm Forge
A quick glance at what is in Arm Allinea Studio

C/C++ Compiler

AArch64

•C++ 14 support

•OpenMP 4.5 without offloading

•SVE ready

Fortran Compiler

AArch64

•Fortran 2003 support

•Partial Fortran 2008 support

•OpenMP 3.1

•SVE ready

Performance Libraries

AArch64

•Optimized math libraries

•BLAS, LAPACK and FFT

•Threaded parallelism with OpenMP

Forge (DDT and MAP)

Cross Platform

•Profile, Tune and Debug

•Scalable debugging with DDT

•Parallel Profiling with MAP

Performance Reports
Cross Platform

•Analyze your application

•Memory, MPI, Threads, I/O, CPU
metrics

© 2017 Arm Limited

Summary

© 2017 Arm Limited 10

Summary :
Overview

Introduction

Arm Performance Reports
Arm MAP

Hands - On : Launch MAP
Hands - On : Launch Perf-reports

Hands - On : Vectorization

Hands - On : Workload Imbalance

Arm DDT

Hands - On : Launch DDT
Hands - On : SIGFPE
Hands - On : Memory Debugging

I

IIIII

© 2017 Arm Limited

Overview

© 2017 Arm Limited 12

Extra documentation

PDC Documentation : https://www.pdc.kth.se/software/software/allinea-forge/index.html

Arm DDT User Guide : https://developer.arm.com/docs/101136/latest/ddt

Arm MAP User Guide : https://developer.arm.com/docs/101136/latest/map

Arm Performance Reports User Guide : https://developer.arm.com/docs/101137/latest/introduction

Arm Forge Webinars : https://developer.arm.com/products/software-development-
tools/hpc/training/arm-hpc-tools-webinars

https://www.pdc.kth.se/software/software/allinea-forge/index.html
https://developer.arm.com/docs/101136/latest/ddt
https://developer.arm.com/docs/101136/latest/map
https://developer.arm.com/docs/101137/latest/introduction
https://developer.arm.com/products/software-development-tools/hpc/training/arm-hpc-tools-webinars

© 2017 Arm Limited 13

We do tools for a single reason:
help people save their time.

.Bottleneck
isolation

Solver
tuning

Bug
Resolution

Code
validation

ProductionTIME

© 2017 Arm Limited 14

Achieving performance portability

Use powerful
tools easily

Retrieve
useful data

Turn “a lot
of” data into
meaningful
information

Turn
information
into better

code

© 2017 Arm Limited 15

Using powerful tools more easily

Remote
Client

• Fast and easy
alternative to X-
Forwarding and
VNC

Reverse
Connect

• Simplifies
integration with
job submission
scripts

Continuous
Integration

• Automation of
debugging &
profiling for
professional
workflows

© 2017 Arm Limited 16

Generating useful and meaningful information

Scalable &

Portable

Data collection

Data

processing

© 2017 Arm Limited 17

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Most widely-used debugging and profiling suite in HPC
• Fully supported by Arm on Intel, AMD, Arm, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2017 Arm Limited 18

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

© 2017 Arm Limited 19

© 2017 Arm Limited

Arm DDT

© 2017 Arm Limited 21

© 2017 Arm Limited 22

Migrate and debug application

Switch between
OpenMP threads

Display pending
communications

Visualise data
structures

Integrate to
continuous

integration tools

© 2017 Arm Limited 23

Five great things to try with Arm DDT

The scalable print
alternative Stop on variable change

Static analysis warnings
on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

© 2017 Arm Limited 24

Arm DDT – The Debugger

Who had a rogue behavior ?

• Merges stacks from processes and threads

Where did it happen?

• leaps to source

How did it happen?

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

© 2017 Arm Limited

Hands – On :
Set up the Tools

© 2017 Arm Limited 26

Reverse-Connect – Client / Laptop side

kinit –f <userName>@NADA.KTH.SE

klist –f

export PATH=$PATH:<pathToForgeInstall>/bin

export PATH=$PATH:/home/prace/arm/forge/bin

ddt --version

ddt

© 2017 Arm Limited 27

1

2

4

5

© 2017 Arm Limited 28

1

2
Pop – Up

Wait

3

Reverse-Connect
Client ready

© 2017 Arm Limited 29

Reverse-Connect – Server / Cluster side
ssh conhil01@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cd /cfs/klemming/nobackup/c/conhil01

cp /afs/pdc.kth.se/home/c/conhil01/Public/arm_trial.tar.gz .

tar –xvf arm_trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01/Public/Licence_kth .

unset ALLINEA_LICENSE_FILE_modshare

unset ALLINEA_LICENSE_FILE

export ALLINEA_FORCE_LICENCE_FILE=$PWD/Licence_kth

cd arm_trial

cd 0_test_reverse_connect

make

salloc –nodes=1 –t 00:10:00 –A pdc-test-2018

ddt –-connect mpirun –n 2 ./hello_c.exe

© 2017 Arm Limited 30

Reverse-Connect – Client / Laptop side

1

2

© 2017 Arm Limited 31

User Interface

© 2017 Arm Limited 32

User Interface – Source code viewer

© 2017 Arm Limited 33

User Interface – Play/ Pause / Step

Step In : Enter a function call and display source code of the function
Step Over : Execute current line of code
Step Out : Comes back one stage above current stack

Play : Run everything. Use typically at the beginning or after Pause
Pause : Stops running current kernel

© 2017 Arm Limited 34

User Interface – Add Breakpoints – Way 1

© 2017 Arm Limited 35

User Interface – Add Breakpoints – Way 2

In the source code viewer,
on the left, left click on the line
to add a Breakpoint
Typical next action : Play

© 2017 Arm Limited 36

Reverse-Connect – Client / Laptop Side

© 2017 Arm Limited

Hands – On :
SIGFPE (Arithmetic Exception)

© 2017 Arm Limited 38

Matrix Multiplication Example

C = A x B + C

© 2017 Arm Limited 39

Environment configuration (reminder)
ssh conhil01@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil01/Public/arm_trial.tar.gz .

tar –xvf arm_trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01/Public/Licence_kth .

unset ALLINEA_LICENSE_FILE_modshare

unset ALLINEA_LICENSE_FILE

export ALLINEA_FORCE_LICENCE_FILE=$PWD/Licence_kth

© 2017 Arm Limited 40

Hands – On : SIGFPE

• 1_interactive_debugging

• Compile the program

• Run one of the binaries. What do you see ?

• Let’s debug it then !

• Recompile with DEBUG=1, launch DDT and … debug !

• Can you find where the problem comes from ?

• Modify the code and recompile (in DDT)

• Relaunch the program.

© 2017 Arm Limited

Hands – On :
Memory Debugging

© 2017 Arm Limited 42

Heap debugging options available

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

© 2017 Arm Limited 43

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

© 2017 Arm Limited 44

Compilation flags for memory debugging

Compiler : -O0 –g

Linking : -L<path_to_DDT_install>/lib/64 –Wl,--allow-multiple-
definition,--undefined=malloc,--undefined=_ZdaPv –

ldmallocthcxx

© 2017 Arm Limited 45

Memory debugging

© 2017 Arm Limited 46

Environment configuration (reminder)
ssh conhil01@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil01/Public/arm_trial.tar.gz .

tar –xvf arm_trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01/Public/Licence_kth .

unset ALLINEA_LICENSE_FILE_modshare

unset ALLINEA_LICENSE_FILE

export ALLINEA_FORCE_LICENCE_FILE=$PWD/Licence_kth

© 2017 Arm Limited 47

Hands – On : Memory debugging

• 3_offline_debugging

• Compile the program

• Run one of the binaries. What do you see ?

• No problem ? Are you sure ? Let’s launch DDT, just in case!

• Recompile with DEBUG=1

• Launch the application with DDT

• Check memory debugging and guard-pages

• Run the program … Any problem ?

• Can you resolve it ?

• Modify the code and recompile (in DDT)

• Relaunch the program.

© 2017 Arm Limited 48

Hands – On : Memory debugging

• Are you sure we are done with hidden issues ?

• Use DDT offline report with “--offline --mem-debug” flags

• Have a look to the report, anything suspicious ?

• Do you see how to fix this ?

© 2017 Arm Limited

Arm Performance Reports

© 2017 Arm Limited 50

© 2017 Arm Limited 51

“Learn” with Arm Performance Reports

Very simple start-up

Fully scalable, very low overhead

Rich set of metrics

Powerful data analysis

© 2017 Arm Limited 52

Metrics Overview

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency

System
usage

© 2017 Arm Limited

Arm MAP

© 2017 Arm Limited 54

Six Great Things to Try with Arm MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access Restructure for
vectorization

© 2017 Arm Limited 55

Glean Deep Insight from our Source-Level Profiler

Track memory usage across the
entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

© 2017 Arm Limited 56

Small data files

<5% slowdown

No instrumentation

No recompilation

Allinea MAP – The Profiler

© 2017 Arm Limited 57

How Arm MAP is different

Adaptive
sampling

Sample
frequency

decreases over
time

Data never
grows too much

Run for as long
as you want

Scalable
Same scalable

infrastructure as
Allinea DDT

Merges sample
data at end of

job

Handles very
high core

counts, fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor

spends time

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling

Identifies lost
compute time

Detects
OpenMP issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling within
your code

© 2017 Arm Limited 58

Preparing Code for Use with MAP

To see the source code, the application should be compiled with the debug flag typically -g

It is recommended to always keep optimization flags on when profiling

© 2017 Arm Limited

Hands – On :
Launch MAP

© 2017 Arm Limited 60

Reverse-Connect – Client / Laptop side

kinit –f <userName>@NADA.KTH.SE

klist –f

export PATH=$PATH:<pathToForgeInstall>/bin

map

© 2017 Arm Limited 61

1

2

4

5

© 2017 Arm Limited 62

1

2
Pop – Up

Wait

3

Reverse-Connect
Client ready

© 2017 Arm Limited 63

Reverse-Connect – Server / Cluster side
ssh conhil01@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-forge

cp /afs/pdc.kth.se/home/c/conhil01/Public/arm_trial.tar.gz .

tar –xvf arm_trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01/Public/Licence_kth .

unset ALLINEA_LICENSE_FILE_modshare

unset ALLINEA_LICENSE_FILE

export ALLINEA_FORCE_LICENCE_FILE=$PWD/Licence_kth

cd arm_trial

cd 0_test_reverse_connect

make

salloc –nodes=1 –t 00:10:00 –A pdc-test-2018

map –-connect mpirun –n 2 ./hello_c.exe

© 2017 Arm Limited 64

Reverse-Connect – Client / Laptop side

1

2

© 2017 Arm Limited

Hands – On :
Launch Perf-Reports

© 2017 Arm Limited 66

Launch Performance Reports
ssh conhil01@tegner.pdc.kth.se

module load i-compilers

module load intelmpi

module load allinea-reports

cp /afs/pdc.kth.se/home/c/conhil01/Public/arm_trial.tar.gz .

tar –xvf arm_trial.tar.gz

cp /afs/pdc.kth.se/home/c/conhil01/Public/Licence_kth .

unset ALLINEA_LICENSE_FILE_modshare

unset ALLINEA_LICENSE_FILE

export ALLINEA_FORCE_LICENCE_FILE=$PWD/Licence_kth

cd arm_trial

cd 0_test_reverse_connect

make

salloc –nodes=1 –t 00:10:00 –A pdc-test-2018

perf-report mpirun –n 2 ./hello_c.exe

© 2017 Arm Limited 67

Visualize Performance Reports outputs

• Two files outputted : .txt and .html

• .txt can be visualized on the cluster with file editor

• Use scp to copy the .html file back to your laptop

• Open it with a Web Browser

© 2017 Arm Limited

Hands – On :

Vectorization

© 2017 Arm Limited 69

© 2017 Arm Limited 70

Computational Intensity
“My program is doing a lot of computation … How do I make it go faster”

Example with modified version of CloverLeaf
• non-threaded version without OpenMP
• MPI, no IO

…

DO k=y_min-2,y_max+2

DO j=x_min-2,x_max+2

pre_vol(j,k)=volume(j,k)+(vol_flux_x(j+1,k)-vol_flux_x(j,k)+vol_flux_y(j ,k+1)-vol_flux_y(j,k))

post_vol(j,k)=pre_vol(j,k)-(vol_flux_x(j+1,k)-vol_flux_x(j,k))

ENDDO

ENDDO

…

© 2017 Arm Limited 71

Vector Units

CPU

Cache

Cores Ctrl

#1 #2

#3 #4 Vector
Unit

Scalar
Unit

Cache

© 2017 Arm Limited 72

Vectorization / SIMD

9

16

25

36

9
3

4

5

6

3

Instruction: sqrt

CPU core

Vector
Unit

Scalar
Unit

Cache

© 2017 Arm Limited 73

Vectorization / SIMD

9

16

25

36

9

Vector
Unit

Scalar
Unit

Intel® AVX2: 256-bit vector unit ➔ 8 SP / 4 DP
Intel® AVX-512: 512-bit vector unit ➔ 16 SP / 8 DP
Arm® NEON: 128-bit vector unit ➔ 4 SP / 2 DP

iter 1

16 25 36

iter 2 iter 3 iter 5

do i=1,n

a(i) = sqrt(b(i))

end do 4x

© 2017 Arm Limited 74

Why? Performance lies in the software

Performance

Vector and parallel
Parallel only
Vector only
No vector or parallel

cores per
socket

© 2017 Arm Limited 75

Identifying the amount of vectorized code

• Arm Performance Reports is an application reporting tool for HPC
• Easy to use: no re-compiling required
• Gives a comprehensible and readable summary of the application behavior

© 2017 Arm Limited 76

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

• Time spent in scalar ops is 14.7%

• Time spent in vector ops 18.9%

© 2017 Arm Limited 77

When? Time to use a profiler

Arm MAP is a lightweight multi-node
profiling tool

• Compiling with debugging flag required

• Shows processes and threads activity over time

• Source code is annotated

• Information aggregated by stacks and function

Compute, IO and MPI

© 2017 Arm Limited 78

How much of the code is vectorized?

© 2017 Arm Limited 79

Where is the code vectorized?

© 2017 Arm Limited 80

Follow Performance Reports advice

© 2017 Arm Limited 81

Follow Performance Reports advice

advec_mom_kernel.f90
...
144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+1
146 IF(node_flux(j,k).LT.0.0)THEN
147 upwind=j+2
148 donor=j+1
149 downwind=j
150 dif=donor
151 ELSE
152 upwind=j-1
153 donor=j
154 downwind=j+1
155 dif=upwind
156 ENDIF
157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)
159 vdiffuw=vel1(donor,k)-vel1(upwind,k)
160 vdiffdw=vel1(downwind,k)-vel1(donor,k)
...

-fopt-info-vec-missed

advec_mom_kernel.f90:145: note: not vectorized: control flow in loop.
advec_mom_kernel.f90:145: note: bad inner-loop form.
advec_mom_kernel.f90:145: note: not vectorized: Bad inner loop.
advec_mom_kernel.f90:145: note: bad loop form.
Analyzing loop at advec_mom_kernel.f90:145

advec_mom_kernel.f90:145: note: not vectorized: control flow in loop.
advec_mom_kernel.f90:145: note: bad loop form.

© 2017 Arm Limited 82

How well is the compiler vectorizing?

advec_mom_kernel.f90
...
144 DO k=y_min,y_max+1
145 DO j=x_min-1,x_max+1
146 IF(node_flux(j,k).LT.0.0)THEN
147 upwind=j+2
148 donor=j+1
149 downwind=j
150 dif=donor
151 ELSE
152 upwind=j-1
153 donor=j
154 downwind=j+1
155 dif=upwind
156 ENDIF
157 sigma=ABS(node_flux(j,k))/(node_mass_pre(donor,k))
158 width=celldx(j)
159 vdiffuw=vel1(donor,k)-vel1(upwind,k)
160 vdiffdw=vel1(downwind,k)-vel1(donor,k)
...

-qopt-report=2

LOOP BEGIN at advec_mom_kernel.f90(145,9)
<Peeled loop for vectorization>

remark #25456: Number of Array Refs Scalar Replaced In Loop: 2
LOOP END

LOOP BEGIN at advec_mom_kernel.f90(145,9)
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at advec_mom_kernel.f90(145,9)
<Remainder loop for vectorization>
LOOP END

© 2017 Arm Limited 83

Analyze the results

Running Performance Reports
with CloverLeaf using 8 MPI tasks
indicates that:

• Time spent in scalar ops is 4.8%

• Time spent in vector ops 28.2%

© 2017 Arm Limited 84

Where is the code vectorized?

© 2017 Arm Limited 85

How?

Different compilers may have different capabilities, but here are guidelines

• Remove conditionals inside loop

• Make sure that loop size is known on entry

• Pay attention to work on contiguous, unit-stride arrays

• Remove data dependencies to enable vectorization

• Use compiler directives to force loop vectorization

© 2017 Arm Limited 86

Conclusion

Vectorizing an application is a difficult task

Arm Performance Reports and Arm MAP make it easier

• Analyze application efficiency and get advices with Performance Reports

• Identify bottlenecks and line by line performance with MAP

Figure out quickly if your application uses vectorization

Find candidates for vectorization

Inspect vectorization over time

© 2017 Arm Limited 87

Hands – On

• 2_profiling_compute

• Compile the code

• Is the code well vectorized ? (with Arm Performance Reports)

• Identify where and how it can be improved (with Arm MAP)

• Modify the code and recompile

• Has vectorization increased ? Do you see any speed-up ? (with Arm Performance
Reports and Arm MAP)

© 2017 Arm Limited

Hands – On :

Workload Imbalance

© 2017 Arm Limited 89

© 2017 Arm Limited 90

Workload balancing: definition

• “Aims to optimize resource use, maximize throughput, minimize response time, and
avoid overload of any single resource.”

(Wikipedia)

• In HPC, a well balanced workload across:
• Multiple nodes over a high-speed network,
• Multiple sockets,
• Multiple NUMA systems
• Multiple cores,
• Multiple accelerators,
• Multiple disk drives,

• Is critical for application performance

© 2017 Arm Limited 91

Identify workload imbalance

• Arm Performance Reports is an application reporting tool for HPC
• Easy to use: no re-compiling required
• Gives a comprehensible and readable summary of the application behavior

© 2017 Arm Limited 92

MPI and OpenMP imbalance

• Clues: excessive synchronization
• MPI collective calls with no actual data transfer
• Idle cores where threads are stuck in locks/mutexes

© 2017 Arm Limited 93

Locate imbalance in your code

Arm MAP is a lightweight multi-node
profiling tool

• Compiling with debugging flag required

• Shows processes and threads activity over time

• Source code is annotated

• Information aggregated by stacks and function

Compute, IO and MPI

© 2017 Arm Limited 94

MPI imbalance: barrier

max

min
avg

max

min
avg

© 2017 Arm Limited 95

MPI imbalance: barrier

© 2017 Arm Limited 96

MPI imbalance: all reduce

© 2017 Arm Limited 97

IO imbalance

© 2017 Arm Limited 98

Hands – On

• 4_profiling_imbalance

• Compile the code

• Are the MPI communications heavy ? (with Arm Performance Reports)

• Are the IOs efficient ? (with Arm Performance Reports)

• Identify where and how it can be improved (with Arm MAP)

• Modify the code and recompile

• Are the performances better ? (with Arm Performance Reports and Arm MAP)

© 2017 Arm Limited

Contact Support

© 2017 Arm Limited 100

Issues with Arm Forge ? Our support team is here to help !

For any questions :
support-hpc-sw@arm.com

CC : conrad.hillairet@arm.com

mailto:support-hpc-sw@arm.com
mailto:conrad.hillairet@arm.com

101101

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!

© 2017 Arm Limited

